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ABSTRACT: Conventional procedures employed in the
modeling of viscoelastic properties of polymer rely on the
determination of the polymer’s discrete relaxation spectrum
from experimentally obtained data. In the past decades,
several analytical regression techniques have been proposed
to determine an explicit equation which describes the meas-
ured spectra. With a diverse approach, the procedure
herein introduced constitutes a simulation-based computa-
tional optimization technique based on non-deterministic
search method arisen from the field of evolutionary compu-
tation. Instead of comparing numerical results, this purpose
of this paper is to highlight some subtle differences
between both strategies and focus on what properties of the

exploited technique emerge as new possibilities for the
field. In oder to illustrate this, essayed cases show how the
employed technique can outperform conventional
approaches in terms of fitting quality. Moreover, in some
instances, it produces equivalent results with much fewer
fitting parameters, which is convenient for computational
simulation applications. The problem formulation and the
rationale of the highlighted method are herein discussed
and constitute the main intended contribution. © 2009 Wiley
Periodicals, Inc. ] Appl Polym Sci 113: 122-135, 2009
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INTRODUCTION

Viscoelasticity is a property of materials such as
amorphous polymers, semicrystalline polymers, and
biopolymers. Polymers’ behavior for infinitesimal
strains can be modeled by consititutive equations
linking the stresses to the strains in the material.
This behavior is time-dependent and can be
described as follows:
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where 1 is the stress tensor, G(f) is the linear relaxa-
tion modulus, and v is the deformation tensor. Equa-
tion (1) shows the stress tensor, as function of linear
relaxation modulus, and the rate of deformation ten-
sor. In linear or nonlinear models of viscoelasticity,
it is convenient to represent the modulus using a
sum of exponential terms as follows:
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where each }; is a relaxation time and G; is its corre-
sponding weight. Equation (2) shows the linear
relaxation modulus as sum of exponentials. This
modulus’ representation requires a set of n pairs (G,
L), i.e., a discrete relaxation spectrum. This set can
be determined from discrete experimental data.

The most commonly employed experiment to
determine the relaxation spectrum of a polymer is
small-amplitude oscillatory shear.! This experiment
measures linear viscoelastic material’s properties as
storage modulus G'(®;) and loss modulus G'(w;) of
the dynamic shear as functions of frequency, which
may be expressed as follows:
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where ; is a particular frequency. The estimation
process consists in properly setting pairs (G;, ;)
such that G'(0;) and G"(w; ) from egs. (3) and (4)
best fit the experimental data. Equations (3) and (4)
show the storage modulus of the dynamic shear and
the loss modulus of the dynamic shear, respevtively.

It has already been observed that the spectrum
estimation from experimental data is an ill-posed
problem. Consequently, minor inaccuracy in the
input data may produce major errors in the solution
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spectra. This characteristic may lead to inadequate
solutions with relatively high regression errors and
spectra with unrealistic waved aspect'? of the fitted
curve because of the excessive degrees of freedom.

Aiming to overcome these drawbacks, various
techniques have been proposed for the proper deter-
mination of the discrete relaxation spectrum. Orbey
and Dealy' discussed and compared three methods:
linear regression, linear regression with regulariza-
tion, and nonlinear regression. The former two
methods require n values to be preset such that they
are equally distributed along a logarithmic scale; the
one with regularization poses requirements on spec-
trum smoothness as an additional constraint inde-
pendent of data. Ramkumar et al.’ proposed another
method using quadratic programming with regulari-
zation. The results obtained with this approach
show that it is possible to estimate solutions with
relatively smaller regression errors and reduced os-
cillation. Baumgaertel and Winter* (according to Ref.
1) proposed a nonlinear regression technique, which
does not need A coefficients to be preset, and is,
therefore, capable of finding all the model’s
parameters.

Roths et al.” developed an edge-preserving regula-
rization method that can properly resolve spectra
with edges or at least large curvatures since the
common regularization methods assumes the relaxa-
tion spectrum to be smooth. Gerlach and Matzenmil-
ler® compared different numerical methods for the
identification of the relaxation spectra. A gradient-
based optimization algorithm is applied to solve the
so-formulated nonlinear optimization problem with
non-negative constraints on the unknown parame-
ters. The same problem is also addressed using a
three-step approach involving the determination of a
qualified tendency function, a Tschebyscheff-approx-
imation to this function, and a quadratic optimiza-
tion method. Both approaches require no estimates
of the relaxation times; however, they need apropri-
ate starting values for the parameters to converge to
stable minina. On the other hand, the windowing
method of Emri and Tschoegl and the regularization
technique based on singular value decomposition
need information about the distribution of the relax-
ation times. The numerical methods requiring addi-
tional information provided a smoother distribution
of the line spectrum.

Recent works have investigated other aspects of
the determination of relaxation spectra. Zatloukal et
al” focused on the estimation of relaxation time
spectrum from capillary steady shear and exten-
sional data since capillary measurements are easy to
obtain and this type of data is usually available for
equipment designers. Malkin® investigated the
advantages of fitting experimental data by using a
continuous relaxation spectrum. Guzman et al.” pro-
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posed a regularization-free method that can avoid
the inversion of the integral equations via regulariza-
tion by using a simple double-reptation model.

This article introduces a nonanalytical regression
approach based on evolutionary algorithms for
determination of relaxation spectra, which is suited
to handle ill-posed problems and, likewise nonlinear
regression methods, can also find all model’s param-
eters. The field of evolutionary computation investi-
gates nondeterministic search algorithms for
complex optimization problems. These techniques
can simultaneously iterate several solutions and
combine the more prommising ones to generate a
new improved set of solutions. EAs have been suc-
cessfully applied to problems with nonlinear or even
discontinuous objective functions, nonconvex objec-
tive function space, nonconvex search space, as well
as ill-posed problems.

The results obtained by applying the proposed al-
ternative to the determination of relaxation spectra
of several polymers studied in the literature*>'%2
show that it can produce curve adjustments with
superior quality in terms of regression error and
reduced waved aspect.

The remainder of this section offers a general con-
ceptual background on evolutionary computation
rationales, which are useful for both understanding
the exploited technique and interpreting the
reported results. “Methodology” section presents the
employed methodology, and the experiments are
described and commented in “Simulation experi-
ments” section. Finally, “Discussion” section high-
lights the main conclusions drawn from the
experiments.

Evolutionary computation

The field known as evolutionary computation
encompasses methods for problem solving by simu-
lating natural evolution process.">'* The employed
computing techniques rely on iteratively applying
random variations and subsequent tailored selection
over a population (set) of prospective solution
instances. Algorithms based on this method are
known as evolutionary algorithms, out of which rel-
evant examples include evolution strategies, evolu-
tionary programming, and genetic algorithms (GAs),
the latter being the approach employed in this work.

In-depth knowledge of either theoretical founda-
tions or technical details concerning GA concepts are
not required for properly understanding the content
of this article. The following subsection is therefore
meant only to provide a general overview of GA ra-
tionale and some background on how to interpret
the obtained results. Its purpose is to introduce the
contributions the method can offer to the focused
problem domain.

Journal of Applied Polymer Science DOI 10.1002/app
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Genetic algorithms

GAs were first introduced by John Holland and his
colleagues at the University of Michigan in the
1960s. Conceptually, the method consists a simpli-
fied mimic of biological evolution by means of simu-
lated genetic recombination and Darwinian natural
selection. In terms of its metaphorical bioinspired
jargon, the original or canonical GA accomplishes its
duty starting from an initial population: a set of a
few randomly chosen individuals. Each individual is
actually a fixed-length binary string (i.e., an array of
0s and 1s) whose single bits parallel genes in an
haploid chromosome. A carefully chosen encoding
scheme is devised so that every bit-string pattern
encodes one possible solution for the given problem.

The solution set, comprising the initial population
is then evaluated by a fitness function, which
expresses how suitably each individual is adapted to
the environment, i.e.,, how “good” the solution is
according to the employed criterion. Then, selection
phase takes place as follows: a few specimens are
chosen to compose a mating pool according to a
selection rule, which grants the best-fitting individu-
als higher chances of being picked up. The subset
formed is given the chance to reproduce, and the
new individuals whereby produced are formed by
the recombination of the chromosome of their
parents, thus preserving information on good genes
along generations. In addition to recombination, ran-
dom mutation (arbitrary alteration) in every single
gene of the descendants may also occur with a lower
probability. With a bit of luck, chances are that some
of the new individuals inherit the best genes from
both their parents and then turn out to be even bet-
ter in terms of the encoded solution. By repeatedly
applying reproduction and selection operations over
the ever evolving population, it is highly probable
that after a reasonable number of generations there
will be good solutions present. Recombination along
with proportional selection tend to preserve good
gene subsequences; mutation is useful to introduce
new prospective gene sequences that would never
be derived from current population solely by recom-
bination operators.

It is important to highlight the fact that this simple
mechanism of GAs does not require a detailed
model of the problem to be known; all that is
needed is a way to compare two solutions to decide
which is better and thus guide the evolution process
step-by-step toward its goal. This makes GAs a
powerful general-purpose tool for optimization
problems. Another noteworthy characteristics of a
GA concerning conventional deterministic search
methods is that it works with a population rather
than with a single solution and therefore exhibits an
implicit parallelism in the search process.

Journal of Applied Polymer Science DOI 10.1002/app
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It is also worth to stress another important prop-
erty of GAs, i.e.,, randomness. As it occurs in natural
evolution, the fittest (best) individuals are given a
higher probability of survival, rather than cer-
tainty—this prevents GAs from getting stuck in local
optima as it is the case for conventional determinis-
tic search methods. Thus, equilibrium between selec-
tion pressure on one hand and random variations on
the other hand must be found. The stronger the for-
mer, the faster the evolution occurs, but higher is
the probability of premature convergence (loss of
global optimum). The stronger the latter, the faster is
the exploration of the search space, but slower is the
convergence to a global optimum.

This stochastic nature allows for an important
assertion about (well designed) GAs as optimization
tools: since a global optimum exists, there are good
chances that its surrounding will eventually be
approached, although it is not possible to known in
advance how many generations it will take. As a
nondeterministic method that relies on randomness-
based operations, a GA can conduct the search do-
main exploration through different paths, depending
on the sequence of values produced by its random
number generator*; if the same deterministic pseu-
dorandom function is utilized, the variations will
then depend on the initial seed supplied to it. There-
fore, for the interpretation of the results produced
by the GA it is important to understand that, if the
problem admits more than one solution within a
given precision interval, successive runs of the algo-
rithm with varying seeds may come out with differ-
ent solutions of equivalent quality. This capacity of
broad search-space exploration along several paths
in parallel is useful for tackling the focused problem.

A number of variants of the canonical GA have been
developed to make it applicable to other binary search
space, and these include real-encoded'® chromosome,
which is the case for the highlighted problem.

METHODOLOGY

The regression problem tackled in this article can be
posed in terms of a multiobjective optimization

*The GA algorithm performs several operations with basis
on randomly chosen numbers. To produce aleatory output
from deterministic computational systems, programs usu-
ally rely on pseudorandom generators: functions that com-
pute different results upon successive calls, depending on
the current value held in an internal state-variable that is
automatically updated at every function evocation. The
apparently aleatory sequence of numbers generated by con-
secutive functional calls must fulfill general proprieties of
randomness such as homogeneous occurrence frequency
and absence of repetition patterns. Distinct random sequen-
ces can be produced by initializing the algorithm internal
state with an initial value often refereed to as random seed.



LINEAR VISCOELASTIC RELAXATION SPECTRUM

problem' in which one wishes to find a set C of n
pairs (Gj, A), i = 1,2,...n, which makes the two para-
meterized functions of eqs. (3) and (4) best fit their
respective experimental data set (the fitting qualities
measured by the mean square errors, MSE). Alterna-
tively, it is possible to convert it into a mono-objec-
tive problem by redefining the goal as the
minimization of a linear combination of the MSE of
each curve as in eq. (5):

. Kg x MSE(G&) +Kgr x MSE(GE)
B KG/ +K "

where MSE(G'c) and MSE(G"c) are the MSE for
G'(w) and G"(w) curve fittings, respectively, obtained
by using the parameter set C, and Ks' and K" are
weighting constants. Therefore, eq. (5) shows the
mean square error.

Conceiving a GA-based approach involves the for-
mulation of the problem in terms of its solution
encoding, fitness function, search space, selection
methods, recombination and mutation operators,
and their corresponding rates.

As for the encoding scheme, the individual’s chro-
mosome may be represented by a sequence C of n
genes, where every gene is a pair (G;, A;), as illus-
trated in Figure 1. From eq. (5), a straightforward
expression for the fitness function is F(C), at the bot-
tom of the figure (the minus sign makes the other-
wise minimization problem into a maximization
problem, only for intuitive consistency with the
metaphor of the best-fitting survival): the lower the
weighted MSE, the higher is the fitness.

The high-level description of the designed GA is
in essence very simple, as depicted in Figure 2.

In the first step, the algorithm generates k individ-
uals whose genes are randomly chosen within the
search space in the range. Next, in Step 2, for each
individual, the algorithm calculates G’ and G” values
for the measured ® using the parameters encoded in
the respective chromosome, and then compares the
so-estimated value with the experimental data,
assigning the corresponding specimen a fitness
score.

M(G,G",C) ®)

chromosome

c=l(@n) |G ] (Ga) ... (Gn) ]
[
_— population
genes S
individual G Cz\\
! Cs C. |
Fitness of individual C: | G °/

FC)=-MGG", C)

c. Cs /
N4

Figure 1 GA encoding scheme.
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1. Create an initial population I with k individuals: P = {C,Ca, ... Ci}.
2. Evaluate the fitness of each individual: F{C), j= 1,2... &

3. Select a subset of s < k individuals to compose the mating pool.

4. Generate d = k — s descendants from the parents in the mating pool.

5. Replace d individuals from the population with the newly gencerated ones.

6. Repeat from step 2 until a good-enough individual has been found.

Figure 2 High-level outline of the implemented GA.

The composition of the mating pool in Step 3 is
performed according to a method known as tourna-
ment of two: a selection scheme where the probabil-
ity of choosing any individual is proportional to its
position in the population fitness rank'* (so that the
best individuals are allowed higher chances to
reproduce, thereby preserving positive characteris-
tics along generations). Reproduction in Step 4 is
also simple. Mating pairs are picked up from the
pool in order, and for each couple, two descendents
are generated by the recombination operator: a
standard real-number crossover well described in
the literature as the blend'® method'.

Next, every gene in the newly generated chromo-
some is subjected to mutation (small random devia-
tion around the original value) with a low
probability. As soon as the new d individuals have
been created, d other individuals of the current pop-
ulation have to be discarded in Step 5. This is done
again by the tournament of two, but this time the
probability of selecting an individual is inversely
proportional to its position in the population fitness
rank (so that worse individuals are allowed a lower
chance to survive). These individuals are then
replaced with the just produced offspring to form
the new generation. Steps 2-5 are repeated until ei-
ther there is an individual whose fitness value is
higher than a reference value r (i.e., the fitting MSE
is less than the specified maximum) or the maxi-
mum allowed number of generations has been
reached, in which case the algorithm ends up with
the best-fitted individual up to that point. It is worth
to note that an upper bound on the number of gen-
eration is only one of the reasonable iteration stop
criteria. For the experiment, preliminary essays can
be carried out to analyze the population convergence
find a limit after which no further optimization takes
place. An alternative is to choose a maximum admis-
sible fitting error and cause the iterations to stop

"The blend operation has a pair of new individuals as out-
come. The chromosome of one of the descendants is obtained
by increasing or decreasing every gene (real number) of one
of its parents by a small random value within a range that is
proportional to the difference between the corresponding
parents’ genes. The second descendent is analogously gener-
ated from the chromosome of the other parent. Therefore,
each one of the new individuals has its genes biased toward
one of its parents.

Journal of Applied Polymer Science DOI 10.1002/app
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TABLE I
GA Parameters Used in the Experiments

Parameter Value
Population size 100
Substitution rate 0.3
Crossover rate 1.0
Mutation rate 0.01
Mutation range 0.1
Blend factor 0.5

when this quality is reached (this, however, requires
knowing in advance that such fitting quality is pos-
sible from the experimental data; muticriteria stop
conditions can be explored as well).

SIMULATION EXPERIMENTS

A program implementing the outlined procedure
was written in C language using the standard GNU
libc6 library, and compiled with gcc-3.3' on a
GNU/Linux PC workstation. The software tool was
named GenFitter.

The algorithm is controlled by a set of operational
parameters that includes population size (how many
individuals exist in the population), substitution rate
(how many individuals are replaced at every genera-
tion), mutation rate (probability that a single gene
suffers mutation), mutation range (random variation
interval), crossover rate (probability of crossover
occurrence), blend factor (which affects the blend
crossover method?), and initial random seed (for the
random number generator). A series of preliminary
empirical essays was carried out to determine a suit-
able set of parameters, which caused the algorithm
to converge in a reasonable time. The values found
are shown in Table I. For the weighted average of G’
and G’ MSEs of the fitness function, as formulated
in eq. (5), an equally balanced ponderation was
adopted (a simple arithmetic average).

In addition to these parameters, the inputs of the
program also include the desired fitness quality
(specified precision, expressed as the maximum tol-
erated MSE), the maximum number of generations
to be essayed, the data files containing the experi-
mental measured values, and the number of pairs
(i.e., the chromosome length) to be used in the esti-
mation of G'(®) and G"(w).

To comply with most works in the literature, the
average absolute deviation (AAD) measure,” shown

Hf ¢ is the ith gene of the nth child and p" is the ith gene of
the mth parent with m,n € [1,2] and iell, Chromosome
length], then c = random(pl — 0.9;, pl + o 8) and c = ran-
dom(p? — o 61, p? + o.d;), where §; = Ip! — p?| and o is the
blend factor.

Journal of Applied Polymer Science DOI 10.1002/app
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in eq. (6), was utilized to compare curve-fitting qual-
ity between different regression methods, where the
tilde-marked and nontilde-marked symbols mean
experimental measurements and regression-esti-
mated values M’ and M” are the number of available
data for G’ and G”, respectively.

~

M /
AAD(G) =2 x ) —(m’)
=1 Gl(“’]) ©)
B M GH G//( )
AAD(G") =
M// ; G”( )

The experiments described in the following sub-
sections aim at the investigation of how GAs can
contribute to rheology as a powerful technique for
the determination of linear viscoelastic relaxation
spectrum of polymers. The essay set includes a se-
ries of tests aimed at replicating the strategies
exploited in previous works based on other techni-
ques. The results obtained provided insights for fur-
ther investigations on how either the number of
parameters or the distribution along log A-dimension
affects regression quality.

Replication of previous works

By the way of evaluating the GA-based approach to
determine the relaxation spectra of polymers, a set
of essays reported in the literature was reproduced
using GenFitter, and the results obtained were com-
pared with those achieved by other techniques.

LDPE curve fitting with decimally spaced preset-A
coefficients

An important result of Laun’s investigations' is that
eight parameters with the second coefficient uni-
formly distributed over the log A-dimension seem to
be enough to suitably fit experimental data for the
LDPE material. Following this indication, the first
conducted experiment was meant to replicate the
curve-fitting works reported in the cited reference,
however using the introduced GenFitter to obtain
the regression parameters. By presetting decimally
spaced log A-coefficients between —4 and +3, the
method reported by the author produced the coeffi-
cients shown in Table II, whereas using the same
preset A-values and the experimental data obtained
from the referred article, GenFitter found the coeffi-
cients shown in Table II.

With these estimated parameters and the experi-
mental data set, from eq. (6), it is possible to calcu-
late the ADD for G’ and G” fittings corresponding to
the parameters listed by Laun: 0.0556 and 0.0591,
respectively.  These values are numerically
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TABLE II
Set of Eight Parameters Found To Characterize LDPE
Material

G; (Pa) i (s)
(a) As reported by Laun
1.00 x 1073 1.00 x 103
1.80 x 10° 1.00 x 10™2
1.89 x 107 1.00 x 107!
9.80 x 10° 1.00 x 10°
2.67 x 10° 1.00 x 107!
5.86 x 10° 1.00 x 1072
9.48 x 107 1.00 x 1073
1.29 x 10° 1.00 x 107*
(b) As found by GenFitter
1.71 x 10° 1.00 x 1073
1.62 x 107 1.00 x 10™2
2.10 x 10° 1.00 x 10*!
1.02 x 10* 1.00 x 10°
249 x 10* 1.00 x 107*
5.84 x 10* 1.00 x 1072
9.51 x 10* 1.00 x 1072
1.71 x 10° 1.00 x 107

comparable with those associated with the slightly
superior curve adjustment produced by GenFitter,
whose corresponding AADs are 0.0532 and 0.0436.
The graphic plot for the fitting curves generated by
either technique is depicted in Figure 3, which
shows that the oscillatory aspects exhibited by both
fitted curves are also similar (note that oscillation is
intrinsic to the experimental data).

Smoothening techniques for LDPE curve fitting

Results suggesting that the curve smoothness can be
favored by decimally spaced log A are provided by
Nicholas and Tschoegl.'” Aiming to obtain even
smoother curves, more akin to the expected theoreti-
cal G’ and G" behaviors, Ramkumar et al.” exploited
a regularization technique (see Evolutionary compu-
tation section), which requires the utilization of sub-
decimally spaced A coefficients—0.2 on logarithmic
scale—to obtain a suitable adjustment quality. The
author used 41 uniformly distributed log A values
within the interval from —4 to +4. The same A;s and
set of experimental data were used to evaluate the
Genlitter capacity.

Considering the errors of both regression experi-
ments, Ramkumar’s fitting ADD for G’ and G” are
0.01332 and 0.0098, respectively. Such outcome was
sensibly outperformed by GenFitter, which pro-
duced an ADD of 0.0002 for G’ and 0.0002 for G”. As
seen in Figure 4, with regularly spaced distribution
of log As, GenFitter-adjusted curve does not sensibly
lose in smoothness comparison with the other
method, but gains substantially in precision.
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With collections of few largely spaced measure-
ment points, as the data set utilized in this experi-
ment, regularization is an artifice that provides a
smoothness improvement of fitted curves obtained
by regression techniques. On the other hand, with-
out such a constraint, the many degrees of freedom
associated with the large number of parameters
allow for GenFitter to find several ADD-equivalent
fitting solutions, some of them are subjected to oscil-
lation. If in addition to reduced error, smoothness is
also sought after, then this additional goal must be
somehow included in the algorithm’s objective
function.

For this purpose, if a smooth function behavior is
assumed, a possible strategy that does not require
modifications in GenFitter implementation consists
in the utilization of an interpolation polynomial to
complete interdata gaps with consistent extra
points—the practical effect is therefore analogous to
that of regularization. To compare the results, a sec-
ond experiment was run with the same 41 preset-As
and a less sparse polynomial-generated data set
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W

Figure 3 Curve-fitting plot with eight preset-A coeffi-
cients for LDPE. (a) G’ fitting by Laun and GenFitter and
(b) G” fitting by Laun and GenFitter.
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Figure 4 Curve plot for 41 subdecimally spaced preset parameters. (a) G’ by Ramkumar; (b) G” by Ramkumar; (c) G’ by
GenfFitter; (d) G” by GenFitter; (e) G' by GenFitter with smoothening; and (f) G” by GenFitter with smoothening.

within the same range determined by Ramkumar.
With these parameters, the AAD of G'- and G"-fitted
curves with respect to the original experimental data
were 0.01480 and 0.01226, respectively. Figure 4(c)
shows the corresponding curve.

When the experiment was re-run with Laun’s ex-
perimental data set, with eight parameters, the poly-
nomial-smoothening technique proved also to be

Journal of Applied Polymer Science DOI 10.1002/app

useful for a different purpose: to filter out measure-
ment imprecision contained in the experimental data
set. This allowed GenFitter obtain fitting curves with
AAD 0.0548 and 0.04887 for G’ and G”, respectively.
Comparing these values with those previously
obtained with raw data, it is possible to observe that
precision was not sensibly affected and smoothness
was improved, as illustrated in Figure 5.
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Figure 5 Plot for eight decimally spaced preset with
smoothening technique. (a) G’ by GenFitter with smooth-
ening and (b) G” by GenFitter with smoothening.

Nonregularly spaced log i coefficients

Ramkumar et al. have shown that, in fitting G’ and
G” from experimental data, smaller uniform spacing
in log A-dimension tends to favor smoothness and
precision of the adjusted curve. As a consequence,
the number of parameter pairs had to be increased
to cover the whole spectrum. A larger number of pa-
rameters, however, is not convenient for the purpose
of rheological simulation, inasmuch as it consider-
ably increases computational load and therefore the
processing time.

Considering there is no physical rationale assert-
ing that regular spacing on log A is required, the
experiments reported in this section aimed to verify
whether better results could be obtained with less
coefficient pairs if this restriction were relaxed. By
allowing the GA to freely explore the search space,
if such a better solution exists, chances are that it
will be approached during the evolution process. In
a way of carrying out this experiment, GenFitter was
modified so as to remove the constraint on A values,
which now are not preset.
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TABLE III
AAD for LDPE Curve for 8 and 41 Pairs with Different
Techniques
Method G G"
(a) Laun’s data '* for LDPE
Laun 8 pairs preset A 0.0556 0.0591
GenfFiffter 8 pairs free A 0.0431 0.0410
(b) Zosel’s data *® for LDPE
Ramkumar 41 pairs preset 1 0.0133 0.0098
GenfFiffter 41 pairs free A 0.0001 0.0001

The simulation for the cases of eight pairs (Laun)
and 41 pairs (Ramkumar) was replicated, and the
results obtained were compared with the previous
ones in Table III. As it can be inferred, for both
Laun’s and Ramkumar’s data, GenFitter is capable
of either equaling or overcoming preset-A
experiments.

On the number of free-A parameters

As it is observed from the performed experiments,
setting A free seems to lead to better solutions, since
the GA is allowed more freedom to explore the
search space. Would this advantage permit GenFitter
to find solutions with fewer parameters with equiva-
lent or improved quality than those previously
found with either 8 or 41 pairs? What is the relation
between the number of regression parameters and
the fitting quality? To answer these questions, the
simulation was re-run several times, varying the
number of parameter pairs from 1 to 16. The corre-
sponding regression errors are shown in Table IV.

TABLE IV

Free-) Regression Errors for 1-16 Parameter Pairs (LDPE)
Number of pairs Error for G’ Error for G”

1 4.0144 3.5398

2 0.5804 0.5434

3 0.3161 0.2609

4 0.1601 0.1439

5 0.0879 0.0790

6 0.0558 0.0481

7 0.0461 0.0450

8 0.0431 0.0410

9 0.0446 0.0393

10 0.0431 0.0410

11 0.0433 0.0410

12 0.0432 0.0410

13 0.0436 0.0387

14 0.0435 0.0401

15 0.0435 0.0401

16 0.0433 0.0392
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As it can be observed, for the particular experi-
mental data set (LDPE, Laun’s listing), the employed
technique (free-A, raw data) allows no effective gain
in precision beyond eight parameters, as it is also
illustrated in Figure 6.

Empirical observations

This section outlines a few empirical observations
that came out during the analysis of the results
obtained from the described experiments.

On the search of space dimension

Figure 7 shows the relaxation spectra of LDPE
(Laun’s data) found by GenFitter in the free-A
experiment for different numbers of parameters. It is
possible to notice that the larger the number of
pairs, the larger is the range of A; found. For
instance, the 10-pair set contains one element (e.g.,
the leftmost upper point in the referred graphic) out-
side the usual range of log A adopted in the litera-
ture, which is usually between —4 and +4. This
seems to comply with Tshoegl’s suggestion that an
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Figure 6 GenFitter-A LDPE curve adjustment for 8 and
10 pairs. (a) G’ fitting and (b) G” fitting.
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Figure 7 Relaxation spectra using different number of pa-
rameter pairs.

adequate distribution of A;s (but not necessarily in
strict equally spaced pattern, as shown by Gen-
Fitter) tends to smooth the curve. An inquiry has
arisen from this observation. Are there better fittings,
maybe with a reduced number of parameters, in an
even broader search space? Because of the technical
limitations, the current algorithm implementation is
not suited for this case; in future works, the authors
intend to address this issue.

On the number of parameters

For a large number of parameters, when the algo-
rithm is run several times with varying random
seeds, different solutions (pair sets) are found with
the same quality. This clearly indicates the presence
of too many degrees of freedom, that is, some pairs
are in excess for the given search stop condition
(specified maximum MSE). To corroborate this
result, Figure 8(a) shows the sets of both 41- and 10-
coefficient pairs found by the free-A GA runs (with
smoothness). Several A;s of the 41-pair solution set
are approximately one or more decades below the
L;s estimated for the 10-pair parameter set, thus hav-
ing less significance for the calculation of G’ and G”
[see egs. (1) and (2)]. Figure 8(b) highlights the selec-
tion of numerically significant parameters from the
41-pair set.

A comparison of G’ and G" plot with either the
whole 41-pair set or the corresponding selected 10-
pair subset is illustrated in Figure 9, in which it is
evident that the removed extra pairs are of minor
effect.

SThe set of parameters found for varying number of free-i
parameters found by GenFitter revels that although not
strictly equally spaced, the estimated coefficients indeed end
up being not too heterogeneously distributed along its axis,
thereby not in opposition to the rationale of Tschoegl’s
proposition.
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Figure 8 Comparison of the significant 41- and 10-param-
eter solution sets. (a) All the 41-pair and 10-pair solutions
and (b) selected pairs from the 41-pair set.

From this behavior it is possible to infer that given
a desired maximum fitting error, there exists a mini-
mum number of pairs needed to properly represent
the solution. What is this number? All the experi-
ments with the GA were run for up to 100,000 gen-
erations only, so they allow no conclusive answer
from the mere obtained numbers. However, a pre-
liminary analysis of the algorithm convergence sug-
gests that the values found are meaningful.

On the multiple solutions

Referring again to Figure 7, the distribution of log A
brings out a visual relationship between both param-
eters, which appear to be as disposed along a curve.
When running the experiment several times, an
interesting feature was then noticed: as the number
of pairs increased, there were more and more points
out of the observed curve. Besides, when the experi-
ment was run with different random seeds, very fre-
quently one of the two behaviors was observed. The
points tended either to be close to the referred curve
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forming a cloud around it or they tend to be moved
away from it, reaching the borders of the search
space. The more the points added, the more evident
becomes such phenomenon. Reasoning upon evolu-
tionary computation rationales, it is interesting to
conjecture about what takes place and why is hap-
pening. A sensible hypothesis is that, given a num-
ber n of pairs that is larger than what is necessary to
fit the curve with the MSE below the specified upper
bound, GenFitter has two ways of getting rid of the
excess. One way is approaching pairs. It is easy to
see from egs. (3) and (4) that two pairs with A;s next
to each other may be replaced by a single pair with
the former G;s summed up. The other way is by
maximizing A. Since both ways lead to low-error sol-
utions, they tend to appear in the population after a
number of generations. Determining the minimum
number of coefficient pairs needed to properly fit
the curve is useful not only for rheological simula-
tion purposes but also to speed up the GA
convergence.

The visual inspection of Figures 7 and 8 shows
and apparent dependence of G; upon A;, from which
it is arguable to conjecture whether both parameters
might be related by a deterministic function. If such
hypothesis is eventually confirmed by further stud-
ies, then interesting contributions to the theory of
viscoelasticity will be on the way. An immediate
consequence would be the reduction of the number
of parameters of egs. (3)) and (4) from n to n/2 as
investigated in Ref. 8. This article, however, does not
propose to address this issue in depth; it is the sub-
ject of ongoing research by the authors.

Fitting G’ and G” for other materials

To verify the generality of the evolutionary compu-
tation approach for the focused problem, GenFitter
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Figure 9 Comparison of G’ and G” plot with either all of
part of the 41-pair set.
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TABLE V
ADD by Different Methods to Fit G’ and G” for Diverse Materials

Method n. par. G G’ Average ADD
(a) Fitting results for polybutadiene
Laun’ 16.6 13.7 15.0
Baungaertel and Winter* 1.18 1.26 122
Honerkamp and Weese? 0.76 0.94 0.85
Ramkumar et al.® 0.018 0.011 0.015
GenFitter (minimum to outperform) 4 0.009 0.010 0.0095
GenFitter (maximum improvement) 8 0.007 0.007 0.007
(b) Fitting results for HDPE
Laun' 4.82 2.73 3.75
Baungaertel and Winter* 1.33 1.12 1.23
HonerKamp and Weese * 0.85 1.26 1.05
Ramkumar et al. 3 0.041 0.020 0.031
GenFitter (minimum to outperform) 6 0.022 0.014 0.018
GenFitter (maximum improvement) 10 0.017 0.017 0.017
(c) Fitting results for model data of Honerkamp and Weese®
Laun® 6.89 10.16 8.57
Baungaertel and Winter* 5.12 5.35 5.24
HonerKamp and Weese” 3.00 4.10 3.55
Ramkumar et al.’ 0.007 1.18 0.60
GenFitter (minimum to outperform) 7 0.029 0.034 0.32
GenFitter (maximum improvement) 10 0.029 0.039 0.34

employed to obtain the regression parameters for
other polymers of importance in the literature of the
area. In these experiments, the free-A version was
utilized, and since the experimental data do not
present apparent unrealistic oscillation introduced
by measurement error, no smoothening technique
was employed. The results found and the best fit-
ness available in the literature are presented in Table
V. For each method, the table lists the number of
adjustment parameters utilized; particularly for Gen-
Fitter, the list includes the minimum number of
pairs needed to equal or outperform other methods,
as well as the maximum number of such parameters
that yields a better result, beyond which no signifi-
cative improvement was obtained. As it can be
observed, GenFitter results are notieceably positive,
specially considering the lower number of parame-
ters required when compared with other techniques.

Also, for the purpose of comparison, the fourth
column in each table brings the average ADD of
both previous columns. Since the optimization goal
of GenFitter is the minimization of the average
ADD, these values shows that even when other
methods have found slightly inferior errors for ei-
ther G’ or G” fittings, the GA was able to outperform
all the others according to its implied objective func-
tions, as in eq. (5). Should some level of priority be
assinged to either fitting, this information can be
encoded in the objective function of eq. (5), which
can even use w-dependent ponderation to enforce
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better ajustment in different parts of the spectrum of
each curve.

DISCUSSIONS

No investigative technique can be properly appreci-
ated with respect to its realistic significance without
sound pragmatic assessment, which take into
account the peculiarities of the implied physical phe-
nomena, conceptual principles, and methodological
constraints. Without losing sight of this principle, it
is worthy to remark that this article is neither meant
to present a completely specified procedure for the
determination of polymer relaxation spectrum nor
intended as guide encompassing experimental
aspects of parameter tuning or other method adjust-
ments for practical usage. Rather, it focuses on
exploring the characteristics of the proposed tech-
nique itself and its potential for the handling of the
addressed problem domain. That is, there are sensi-
ble concerns regarding the practical usefulness of
our proposed contribution, which deserve special
annotations.

As a first remark, the end objective of the problem
domain tacked in this work is to be able to predict
time-dependent mechanical behavior of viscoelastic
polymers by determining a discrete relaxation spec-
trum (G, A;). Naturally, one would like this to repre-
sent the behavior of a given phenomenon as it
physically develops in the real world. In addition to
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the estimation of the error introduced by inherent
imperfections of experimental procedure, the assess-
ment of the obtained results must also take into
account the available domain-specific knowledge
about the system’s expected properties. That is why,
although the capability of the proposed technique to
estimate fitting parameters for the studied curve was
taken as a metric for the method evaluation, this
does not mean that the sole criterion used for the
success of introduced method can be how well it is
able to fit the original data. Indeed, it is well known
that spectra able to fit the data quite well can be
pathological when compared with realistic continu-
ous spectra, like, for instance, yielding negative
relaxation strengths, which is quite unphysical.

In this study, approaching the example as a curve-
fitting problem was one of the possible strategies to
highlight the fact that nondeterministic simulation-
based methods, upon which evolutionary computa-
tion is founded, inherently constitute general-pur-
pose search techniques considerably independent of
an in-depth knowledge about the object-system’s
model, in the sense that the algorithm itself does not
incorporate any characteristic that might come from
the specificities of the application domain; these can
be incorporated into the search criteria.

Unlike conventional analytical methods, the
knowledge of peculiarities of the system model
(including both theoretical assumptions and experi-
mental issues) is not intrinsically embedded into the
algorithm itself, such as in the case of the curve
smoothening by means of regularization techniques,
or variable pondering constants aimed to selectively
weight regression errors along different portions of
the data set scale. Rather, GAs take this domain-spe-
cific knowledge as an input, in the form of a fitness
function that encompasses whatever the criteria the
users judges relevant to assess the quality of the so-
lution he or she is expecting to find.

The fitness function can be as simple as a measure
of linear regression error or as elaborate as a set of
restrictions on the curve behavior according to real-
istic assumptions. As a practical consequence, the
user can take our example algorithm exactly as it is
and change only the fitness function to include any
criteria he or she considers important to reflect both
theoretical and experimental knowledge about the
particular system under investigation.

Another relevant issue that may come about is
when it is noted that GA method can yield different
solutions of “equivalent quality” by varying the
choice of the initial seed and there is no guidance as
to how to select this. Indeed, because there exists an
aleatory factor in the choices made by the GA dur-
ing its execution, it immediately follows that succes-
sive runs of the algorithm will perform the search
space exploration through different paths according
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to the particular random number sequence used,
what in turn depends on the initial seed provided to
the pseudo-random function. That is, if the algo-
rithm execution converges to a given optimum, it
can approach this same optimum (or other optima)
from different directions. Therefore, successive runs
can reach the termination condition in different
points of the search space where the referred condi-
tion meets.

If this condition is, as in our case, that the best
individual of the solution population is better than a
given acceptable reference (low regression error),
then every found solution reached in successive
runs will be equivalent with respect to the evalua-
tion criteria, that is, the fitness function. There is no
meaningful way in which one solution can be con-
sidered better than the other because all meet the
criteria we have established. If for some other crite-
ria any solution may be considered better than
others, then these criteria can be included in the fit-
ness function and then those “better” solutions will
naturally be privileged during evolution process.
That is how we may include another restriction, for
example, varying weights for regression errors in
different extensions of the abscissa scale. Another
related practical issue not addressed in our simula-
tion experiments is the reliability of the inferred
spectrum near the ends of the data range. Although
this issue does not fit into the focus of this article,
directions on this matter can be addressed straight-
forwardly: all that is needed is to provide a formula
to numerically measure it and embed into the fitness
function.

Summarizing the earlier discussion, it is worth to
explain that GAs can be adapted and optimized in
many ways. Relevant design decisions include the
solution codification schema, recombination and
mutation operators, initial population size, substitu-
tion rate at each generation, best-fit selection strat-
egy, among other technical issues. These decisions
have direct influence on the effectiveness of the
results produced by the GA implementation, as they
can determine how fast the search domain is
explored, the tendency of premature convergence to-
ward a local optimum, the robustness of the algo-
rithm with respect to producing equivalent results in
successive runs independently from the random
seed utilized, and even the capability of reaching a
reasonable solution.

The GA presented in this article, which we called
GenFitter, was carefully tailored for the kind of
problem under investigation. A good deal of back-
ground on evolutionary computation and exhaus-
tive experimental work were employed to design a
GA tunned to work considerably well for the visco-
elastic relaxation model and its numerical
constraints.
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One more aspect to be noticed is that the simula-
tion experiments were able to find suitable solutions
for the problem with different number of parameter
pairs, ranging from as low as 8 to as high as some
tens. How is n selected? Obviously, if the number of
parameters is allowed to be equal to the number of
data points, all the data can be fitted with zero error.
In such a case, one is fitting random error in the
data. And using too many parameters leads to G(t)
plots with quite unrealistic features.

Actually, in the simulation experiments, n was not
selected. The algorithm was run with several n val-
ues, and then the results were compared. What can
be concluded from them is that there is both a lower
and upper bound for the number of parameter pairs
needed to fit the curve. Too small the value of n, the
regression error is unacceptable; too large the value
of n, there appears exceeding parameters with low
significance in the final result. This was already
expected from the theory. Nevertheless, the way the
evolutionary computation simulation technique han-
dles the issue is noteworthy.

Resorting to the metaphor of Neo-Darwinian evo-
lution theory that grounds the GAs rationale, when
the initial population is made of individuals with
too many regression parameters, i.e., n is too large
(computer-simulated), “natural” selection makes use
of just a few of those parameters to produce well-fit-
ted individuals. As it happens in natural evolution,
genes that do not effectively contribute to improve
the individual fitness do not tend to be preserved
along generations. When too many parameters are
used, the selective pressure naturally eliminates the
useless genes by assigning them numerical values
that do not interfere in the final result. It was even
shown that the extra parameters fuzzily cloud
around a well-defined curve of a small set of signifi-
cant parameters (in biology terminology this effect is
related to “genetic drift”). We also show that the
final result is not modified if those excess of parame-
ters is removed.

The objective of establishing the minimum num-
ber of pairs that will “properly” fit the curve is
addressed by the “parsimonious” spectrum, which
results from the method of Baumgértel and Winter.
However, they propose a systematical method to
reduce the number of parameters. In the presented
approach, the GAs find the minimum number of pa-
rameters by itself. It requires no mathematical or ex-
perimental assumptions and can work with free-A
sets. That is why # is not listed as an algorithm pa-
rameter in Table L

To solve this ill-posed problem, some analytical
methods add information to find a meaningful solu-
tion. The assumption of smoothness in G(t) is the
one most often used. This can be done by several
means, including regularization techniques which of-
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ten resort to some empirically determined constant.
As an example only, this work uses a “polynomial
smoothing technique,” which has also been adopted
in other problems of this kind. There are a few extra
comments that can lay some light on this other fea-
ture of evolutionary computation when applied to
the present problem domain.

As explained, to guide the evolution of prospec-
tive solutions toward an optimum, a criterion is
needed to compare two solution instances and
decide which is preferable. This criterion is given by
the so-called fitness function. In our simulation
experiment, we first adopted the regression error as
the fitness criteria. That is, the evolution process
pressed the solutions toward this goal, and this goal
alone. Since the input data set includes experimental
noise, lower regression errors are obtained when the
curve fits such noise. To show that, if one judges
conveniently, the selection criteria may be easily
replaced (that is, it is not a part of the algorithm but
a user-provided input), we extended the experiment
to include a second criterion: to minimize regression
error and at the same time to maximize the curve
smoothness.

One of the possible methods to filter out random
errors from the experimental data set is by means of
an interpolation polynomial. This polynomial was
then used to obtain a synthetic data set that argu-
ably, upon the rationales of statistics, is a meaning-
ful measure. Another way to achieve the same result
would be to effectively modify the fitness function
by making its value depend on both a measure of
regression error and a measure of curve smoothness.
This second approach would require a less trivial
mathematical expression to quantify smoothness in
numerical values, which could be significantly com-
bined to the regression error values in the same
equation. We found the first approach more suitable
(compared with the regularization technique, for
example, the interpolation polynomial is determinis-
tically found, and does not depend on the choice of
an arbitrary factor).

Finally, it can be observed that two data sets are
used as the basis for comparing the simulation tech-
nique with other methods for the LDPE material:
one is an old set obtained by Laun on a low-density
polyethylene and the other set in fact is a model
spectrum constructed by Ramkumar et al., all
obtained in tabular data lists from the Ilitera-
ture.'>31071218  Actually, using modern up-to-date
experimental data would be interesting for the pur-
pose of producing a set of usable (G;, %;) parameters.
However, our main goal was to compare the results
we could obtain from our GA-based technique with
the ones reported by classical works of the literature.
Since many authors have compared their methods
with those by Laun and Rankumar, we considered
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interesting to base our evaluation on the same set of
input data.

CONCLUSIONS

Out of the outlined discussion, it is possible to draw
some conclusions. The first and foremost is that the
proposed GA approach for the highlighted fitting
problem succeeds in replicating the results obtained
by conventional deterministic methods reported in
the literature. Furthermore, when the method was
evaluated for LDPE material and compared with the
fitting techniques reported by Laun and Ramkumar,
it was able to produce either equivalent or better sol-
utions with less parameters.

Some conventional regression methods already
used to solve the present fitting problem require one
of the parameters, either G; or A;, to be fixed a priori.
In general, equally spaced values are chosen in the
log A axis, and then corresponding G values are cal-
culated by deterministic procedures. On the other
hand, this is not a requirement for the presented
GenFitter: both G; and A; are set free so that the GA
can test any combination. The results show that
there exist solutions with unequally spaced log A
that are better than those found under the restriction
of preset As. GenFitter also empirically determine
the minimum number of parameter pairs required
for an adequate adjustment of G' and G” as per-
formed in Refs. 1 and 4.

The proposed approach was evaluated for poly-
mers studied in other works,' 7 and the results
obtained show that it can lead to solutions with rela-
tively smaller regression error and reduced oscilla-
tion. Compared with linear regression, it does not
require regularization and can suitably handle ill-
posed problems. When explicitly required, smooth-
ness could be included as a criterion by prefiltering
experimental data by a interpolation polynomial—
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essays have shown that the results obtained are
equivalent to regularization; although the herein
introduced methodology does not rely on adjusted
factors, which are independent of the data
themselves.

The successful use of the proposed evolutionary
computation method allows claiming that, despite
their conceptual simplicity and easy implementation,
GAs constitute a powerful tool for regression and
multiobjective problems and can prove to be very
useful for the determination of linear viscoelastic
relaxation spectra.

References

1. Orbey, N.; Dealy, J. M. ] Rheol 1991, 35, 1035.
2. Honerkamp, J.; Weese, ]. Macromolecules 1989, 22, 4372.
3. Ramkumar, D. H. S.; Caruthers, J. M.; Mavridis, H.; Shroff, R.
J Appl Polym Sci 1997, 64, 2177.
4. Baumgaertel, M.; Winter, H. Rheol Acta 1989, 28, 511.
5. Roths, T.; Maier, D.; Friedrich, C.; Marth, M.; Honerkamp, J.
Rheol Acta 2000, 39, 163.
6. Gerlarch, S.; Matzenmiller, A. Int ] Numer Methods Eng 2005,
63, 428.
7. Zatloukal, M.; Vlcek, J.; Tzoganakis, C.; Dobbie, T. Adv Polym
Technol 2000, 19, 277.
8. Malkin, A. Y. Int ] Appl Mech Eng 2006, 11, 235.
9. Guzman, J. D.; Schieber, J. D.; Pollard, R. Rheol Acta 2005, 44, 342.
10. Laun, H. M. Rheol Acta 1978, 17, 1.
11. Meissner, M. Rheol Acta 1971, 10, 230.
12. Meissner, M. Rheol Acta 1971, 14, 471.
13. Goldberg, D. E. Genetic Algorithms in Search, Optimization,
and Machine Learning; Addison-Wesley: Massachusetts, 1989.
14. Baeck, T.; Fogel, D.; Michalewicz, Z. Handbook of Evolution-
ary Computation; Oxford University Press and Institute of
Physics Publishing: New York and Bristol, 1997.
15. Deb, K. Multi-Objective Optimization Using Evolutionary
Algorithms; Wiley: New York, 2001.
16. The GNU Operating System. Available at: http://www.gnu.
org, 2005.
17. Tschoegl, N. W. The Phenomenological Theory of Linear
Viscoelastic Behavior; Springer-Verlag: Berlin, 1989.
18. Meissner, J. Pure Appl Chem 1975, 42, 553.

Journal of Applied Polymer Science DOI 10.1002/app



